
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 287 (2005) 1045–1051
0022-460X/$ -

doi:10.1016/j.

�Tel.:+1 40

E-mail add
www.elsevier.com/locate/jsvi
Short Communication

A generalized iteration procedure for calculating
approximations to periodic solutions

of ‘‘truly nonlinear oscillators’’

Ronald E. Mickens�

Department of Physics, Clark Atlanta University, Atlanta, GA 30314, USA

Received 9 February 2005; received in revised form 7 March 2005; accepted 10 March 2005

Available online 1 June 2005
Abstract

An extended iteration method for calculating the periodic solutions of nonlinear oscillator equations is
given. The procedure is illustrated by applying it to two ‘‘truly nonlinear oscillator’’ differential equations.
r 2005 Elsevier Ltd. All rights reserved.
Consider a nonlinear oscillator modeled by the following differential equation:

€x þ gðxÞ ¼ �f ðx; _xÞ; xð0Þ ¼ A; _xð0Þ ¼ 0, (1)

where � is a positive parameter, not necessarily small, and the functions gðxÞ and f ðx; _xÞ have the
properties:

gð�xÞ ¼ �gðxÞ, (2a)

f ð�x;� _xÞ ¼ �f ðx; _xÞ. (2b)

If gðxÞ does not have for small x a dominant term proportional to x, then Eq. (1) is said to be a
‘‘truly nonlinear oscillator’’ (TNO). Two examples of such equations are

€x þ x1=3 ¼ 0, (3)
see front matter r 2005 Elsevier Ltd. All rights reserved.
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€x þ x3 ¼ �ð1� x2Þ _x. (4)

It is clear that none of the standard methods for constructing perturbation solutions to these
equations (for the case where 0o�51) apply since these procedures assume that when � ¼ 0 the
resulting differential equation is that for the harmonic oscillator [1,2], i.e.,

� ¼ 0 : €x þ o2x ¼ 0; o ¼ constant. (5)

The following question now arises: Can a method be constructed for TNO equations that will
allow the calculation of valid analytical approximations to their periodic solutions? A number of
researchers have studied this problem and other related issues; a partial listing of such work
includes the papers given in Refs. [1–10].

The purpose of this communication is to propose an iteration method that can be used to
determine analytical approximations to the periodic solutions of TNO differential equations. This
method, in principle, does not require the parameter � to be small. The basis of the method is a
result formulated by Mickens [3], which was then generalized by Lim and Wu [10]. It should be
pointed out that while the so-called quasi-linearization method [11] shares some similar features
with the proposed iteration scheme, the two procedures differ in their calculational philosophy
and in the accuracy of the approximations to the periodic solutions for oscillatory systems; the
paper of Krivec et al. can be consulted for references to the quasi-linearization method and how it
has been applied.

To begin, let Eq. (1) be rewritten as

€x þ O2x ¼ Gðx; _xÞ, (6)

where O2 is not defined at this point and Gðx; _xÞ is

Gðx; _xÞ � O2x � gðxÞ þ �f ðx; _xÞ. (7)

The proposed iteration scheme is

€xkþ1 þ O2xkþ1 ¼ Gðxk�1; _xk�1Þ þ Gxðxk�1; _xk�1Þðxk � xk�1Þ

þ G _xðxk�1; _xk�1Þð _xk � _xk�1Þ, ð8Þ

where

Gxðx; _xÞ ¼
qG

qx
; G _xðx; _xÞ ¼

qG

q _x
, (9)

and k takes on the integer values ð0; 1; 2; . . .Þ. To start the iteration, x�1ðtÞ and x0ðtÞ need to be
specified; they are taken to be

x�1ðtÞ ¼ x0ðtÞ ¼ A cosðOtÞ. (10)

Note, first, that for a given value of k, the solution must satisfy the initial conditions

xkþ1ð0Þ ¼ A; _xkþ1ð0Þ ¼ 0, (11)

and, second, the differential equation to solve for xkþ1ðtÞ is second order, linear, inhomogeneous,
where the inhomogeneous term is explicitly known in terms of previously calculated
approximations.
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The values for O2 and for A, in the case of limit-cycle solutions, are determined by expanding G

in a Fourier series and setting the coefficients of the cosðOtÞ and sinðOtÞ terms equal to zero. This
requirement assures that the solution, xkþ1ðtÞ, will not contain secular terms [12]. With these terms
eliminated from the inhomogeneous differential equation, the particular solution, x

ðPÞ
kþ1ðtÞ, can

then be calculated. However, it should be stressed that the complete solution for xkþ1ðtÞ includes
the homogeneous solution

x
ðHÞ

kþ1ðtÞ ¼ C1 cosðOtÞ þ C2 sinðOtÞ, (12)

where C1 and C2 are arbitrary constants. Thus,

xkþ1ðtÞ ¼ x
ðHÞ

kþ1ðtÞ þ x
ðPÞ
kþ1ðtÞ

¼ C1 cosðOtÞ þ C2 sinðOtÞ þ x
ðPÞ
kþ1ðtÞ. ð13Þ

The constants C1 and C2 are determined from the initial conditions given in Eq. (11). This
procedure can be extended to as large a value of k as needed. In practice, k ¼ 1 or k ¼ 2 will
suffice to display all the essential features of the periodic solutions. However, the existence of
computer algebra software allows the possibility for extending the iteration to large values of k.

It should be stated that in calculating xkþ1ðtÞ from the formula given by Eq. (8), both xk�1ðtÞ

and xkðtÞ are needed. These functions are known from the previous calculations. However, when
they are substituted into the right-hand side of Eq. (8), the forms to be used should contain the
amplitude, A, and angular frequency, O, unevaluated at the particular numerical values previously
determined by the calculation. For example, the differential equation for x1ðtÞ is dependent on
knowing both x�1ðtÞ and x0ðtÞ. At this stage of the calculation, they are taken (by assumption) to
be A cosðOtÞ. The elimination of secular terms will either determine O as a function of A, for
conservative systems, or A and O, separately, as will be the situation for a limit-cycle problem. The
explicit solution for x1ðtÞ can always be written in such a manner that it depends on A and O in
unevaluated form. It is this structure that is to be used for the calculation of x2ðtÞ. The two worked
examples will make explicit what this particular feature means. The reason for doing the
calculation this way is because O is recalculated anew at each stage of the iteration by the
requirement that no secular terms exist.

The details as to how to carry out this iteration scheme are illustrated in the following two
examples. The first is the nonlinear conservative oscillator [1]

€x þ x3 ¼ 0. (14)

For this case

gðxÞ ¼ x3; f ðx; _xÞ ¼ 0, (15)

and, consequently,

Gðx; _xÞ ¼ O2x � x3. (16)

Since Eq. (14) has the first-integral

y2

2
þ

x4

4
¼ constant, (17)
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it can be concluded that all the solutions are periodic [12]. The corresponding iteration scheme is

€xkþ1 þ O2xkþ1 ¼ O2xk�1 � ðxk�1Þ
3
þ ðO2 � 3x2

k�1Þðxk � xk�1Þ. (18)

Using the results in Eq. (10), x1ðtÞ satisfies the differential equation

€x1 þ O2x1 ¼ A O2 �
3A2

4

� �
cosðOtÞ �

A3

4

� �
cosð3OtÞ. (19)

The absence of a secular term requires that

A O2 �
3A2

4

� �
¼ 0, (20)

or, for the nontrivial solution, i.e., Aa0,

O � OðAÞ ¼

ffiffiffi
3

4

r
A. (21)

The particular solution for the resulting Eq. (19) is

x
ðPÞ
1 ðtÞ ¼ D cosð3OtÞ, (22)

where

D ¼
A3

32O2
¼

A

24
. (23)

Thus, the complete solution for x1ðtÞ is

x1ðtÞ ¼ C1 cosðOtÞ þ
A

24

� �
cosð3OtÞ. (24)

Imposition of the initial conditions from Eq. (11) gives

x1ð0Þ ¼ A ¼ C þ
A

24
or C ¼

23

24

� �
A. (25)

Therefore, x1ðtÞ is

x1ðtÞ ¼
A

24

� �
23 cosðOtÞ þ cosð3OtÞ½ �; O ¼

ffiffiffi
3

4

r
A. (26)

Continuing to k ¼ 1 gives

€x2 þ O2x2 ¼ O2x0 � ðx0Þ
3
þ ðO2 � 3x2

0Þðx1 � x0Þ. (27)

Substituting into the right-hand side the results from Eqs. (10) and (26), and simplifying the
resulting expression gives

€x2 þ O2x2 ¼
23A

24

� �
O2 �

3 	 22

4 	 23

� �
A2

� �
cosðOtÞ

þ
A

24

� �
O2 �

27A2

4

� �
cosð3OtÞ �

A3

32

� �
cosð5OtÞ. ð28Þ
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Secular terms are eliminated by setting the coefficient of cosðOtÞ equal to zero; doing this gives

OðAÞ ¼
22

23

� �1=2
ffiffiffi
3

4

r
A. (29)

It is straightforward to calculate the particular solution and, from it, the complete solution with
the initial conditions, x2ð0Þ ¼ A and _x2ð0Þ ¼ 0, satisfied; it is

x2ðtÞ ¼
A

12672

� �
fð12; 094Þ cosðOtÞ þ ð555Þ cosð3OtÞ þ ð23Þ cosð5OtÞg, (30)

with OðAÞ from Eq. (29).
Note that the nonlinear oscillator, given by Eq. (14), can be solved exactly as expressed in terms

of a Jacobi elliptic function [12]. The exact period is four places [12].

Texact ¼
2p

OðAÞ
¼

7:4163

A
. (31)

Let T1ðAÞ and T2ðAÞ be the periods determined by the first and second iteration procedure given
above; they are given by

AT1ðAÞ ¼ 7:25519; AT2ðAÞ ¼ 7:41824. (32)

Note that the fractional error for T2ðAÞ is

T exact � T2

T exact

����
����� 100 ’ 0:03%. (33)

This result is an indication of the accuracy of the proposed method as applied to this particular
problem.

The second example is a TNO of the van der Pol type; it is given by the differential equation

€x þ x3 ¼ �ð1� x2Þ _x; xð0Þ ¼ A; _xð0Þ ¼ 0, (34)

where

gðxÞ ¼ x3; f ðx; _xÞ ¼ �ð1� x2Þ _x; Gðx; _xÞ ¼ O2x � x3 þ �ð1� x2Þ _x. (35)

For this case, the iteration scheme is

€xkþ1 þ O2xkþ1 ¼ O2xk�1 � x3
k�1 þ �ð1� x2

k�1Þ _xk�1

þ O2 � 3x2
k�1 � 2�xk�1 _xk�1

� 	
ðxk � xk�1Þ

þ �ð1� x2
k�1Þð _xk � _xk�1Þ, ð36Þ

with xkþ1ð0Þ ¼ A and _xkþ1 ¼ 0. For k ¼ 0, Eq. (36) becomes

_x1 þ O2x1 ¼ O2x�1 � x3
�1 þ �ð1� x2

�1Þ _x�1. (37)

Substituting Eq. (10) into the right-hand side gives, on simplification, the result

€x1 þ O2x1 ¼ A O2 �
3A2

4

� �
�

A3

4

� �
cosð3OtÞ � �OA 1�

A2

4

� �
sinðOtÞ þ

�OA3

4

� �
sinð3OtÞ. (38)
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No secular terms requires

A O2 �
3A2

4

� �
¼ 0; �OA 1�

A2

4

� �
¼ 0, (39)

and gives for A and O the values [2]

A ¼ 2; O ¼
ffiffiffi
3

p
. (40)

The corresponding particular solution can be easily calculated and if added to the homogeneous
solution gives

x1ðtÞ ¼ C1 cosðOtÞ þ C2 sinðOtÞ þ
1

12

� �
cosð3OtÞ �

�

4
ffiffiffi
3

p

� �
sinð3OtÞ, (41)

where C1 and C2 are constants determined by the initial conditions, x1ð0Þ ¼ A ¼ 2 and _x1ð0Þ ¼ 0;
they turn out to be

C1 ¼
23

12
; C2 ¼

ffiffiffi
3

p
�

4
. (42)

Therefore, x1ðtÞ is, on using O ¼
ffiffiffi
3

p
,

x1ðtÞ ¼
1

12

� �
ð23Þ cos

ffiffiffi
3

p
t


 �
þ cos 3

ffiffiffi
3

p
t


 �h i

þ
�

4
ffiffiffi
3

p

� �
3 sin

ffiffiffi
3

p
t


 �
� sin 3

ffiffiffi
3

p
t


 �h i
. ð43Þ

Observe that x�1ðtÞ and x0ðtÞ, with this information on the values of A and O, are

x�1ðtÞ ¼ x0ðtÞ ¼ 2 cos
ffiffiffi
3

p
t


 �
. (44)

An effort to calculate x2ðtÞ shows that while it is straightforward to perform, the calculations are
algebraic intensive.

In summary, a modified iteration method for calculating analytical approximations to the
periodic solutions of ‘‘truly nonlinear oscillators’’ (TNO) has been proposed. Its applicability has
been demonstrated by means of two examples. The method builds on the previous work of
Mickens [3] and Lim and Wu [10].

Future studies will involve the investigation of elastic force functions, gðxÞ, for which only a
finite number of derivatives exist at x ¼ 0. An example of such an equation is [6,9]

€x þ x1=3 ¼ 0. (45)

In general, this means that only a finite number of iterations can be performed. This fact may not
be an essential difficulty since the evaluation of just x1ðtÞ for a TNO can give a useful result if no
other method is available.
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